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Abstract. The zero-field susceptibility of the transverse Ising chain with arbitrary spin-S is
expressed in terms of the eigenvector for the maximum eigenvalue of its transfer matrix. As a
result, the exact susceptibility is explicitly obtained forS = 1

2 , 1, 3
2 and can be obtained at least

for S 6 7
2 . The numerical calculations of the susceptibility for arbitrary spin are possible and

those forS = 6, 12 and 24 are given. It is also derived that the zero-temperature limit of the
susceptibility is independent on spin-S.

1. Introduction

The transverse Ising chain is one of the most fundamental spin systems with non-trivial
quantum effects. The Hamiltonian of this system is

H = −J

N∑
i=1

sz
i s

z
i+1 − gµBH

N∑
i=1

sx
i (1.1)

wheresl
N+i = sl

i (l = x, y, z) andsl
i is the l-component of spin operator on sitei.

This model has been studied as a model of a one-dimensional magnetic system and also
in connection with tunnelling effects [1, 2]. The model with spin1

2 is equivalent [3] to the
two-dimensional Ising model with spin12 on a rectangular lattice. The zero-field transverse
susceptibility for (1.1) with spin1

2 was obtained exactly by Fisher [4, 5]. The complete free
energy for (1.1) with spin1

2 was obtained by Katsura [6] and later by Pfeuty [7].
Ising models with higher spin values have been investigated mainly for the case without

transverse magnetic field. Ising models with small spinS have been exactly treated [8–
10] in one-dimension, and also studied [11–13] from the viewpoint of the theorem of Lee
and Yang. Spin-one cases of the Ising model with quadratic terms have been investigated
[14–19] originally in connection with first-order phase transitions in a UO2 magnet and in
mixtures of liquid He3–He4. A continuous version of the spin chain, which is regarded as
the infiniteS limit of the Ising chain, can be treated exactly [20–22].

The transverse Ising chain with arbitrary spin has also been of interest to several authors
[23–26].

The purpose of this paper is to calculate the zero-field susceptibility of transverse Ising
chain with arbitrary spin, i.e. the magnetic fluctuation in the transverse direction of the
Ising model (1.1) atH = 0. In section 2.1 the susceptibility is expressed in terms of the
eigenvector for the maximum eigenvalue of the transfer matrix for the Ising chain. The
exact susceptibility is in section 2.2 explicitly obtained forS 6 3

2 and can trivially be

0305-4470/96/196395+11$19.50c© 1996 IOP Publishing Ltd 6395
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Figure 1. The zero-field susceptibility of transverse Ising chain (1.1) with spinS 6 7
2 .

Figure 2. The zero-field susceptibility of transverse Ising chain with spinS 6 7
2 , S = 6, 12

and 24, wheresl
i (l = x, y, z) in (1.1) are replaced bysl

i /S (l = x, y, z) so that the model is
described by the Hamiltonian (2.28).

obtained forS = 2 and 5
2, from the eigenvector and the maximum eigenvalue listed in

the appendix. Analytic expression is possible at least up toS = 7
2. It is also possible to

calculate the exact value of the susceptibility for arbitrary spin-S numerically. The results
for S 6 7

2 are shown in figure 1. The equivalent results forS 6 7
2 are shown in figure 2 for

different normalization of the spin operatorsl
i 7→ sl

i /S (l = x, y, z) together with the results
for S = 6, 12 and 24. High- and low-temperature expansions are given in section 2.3 for
arbitrary spin-S with the result that the zero temperature limit of the susceptibility is a finite
constant independent on spin values.

In the present paper, the susceptibility is calculated by a perturbative expansion and
each term in the expansion is expressed by some correlation functions. The terms in the
expansion are correctly summerized. This is possible because, in the present method for
this model, only short-ranged correlations appear and they can be calculated explicitly.
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2. The transverse susceptibility at zero-field

2.1. Formulation in terms of the eigenvector

Let us introduce new notations as

H = H0 − HQ (2.1)

where

H0 = −J

N∑
i=1

sz
i s

z
i+1 Q = gµB

N∑
i=1

sx
i . (2.2)

We assumeJ > 0 but our results are not affected by the sign ofJ . The susceptibilityχ at
zero-field of the transverse Ising model described by the Hamiltonian (2.1) is by definition

χ = ∂

∂H
〈Q〉|H=0

= ∂

∂H

Tr Q exp(−βH)

Tr exp(−βH)
|H=0 (2.3)

where〈〉 is the expectation taken byH, β = 1/kBT , kB is the Boltzmann constant andT
is the temperature. We have to note the uncommutability [H0, Q] 6= 0 in (2.3).

Here let us introduce the following formula

d

dH
exp(−βH) = exp(−βH)

∫ β

0
exp(λH)Q exp(−λH) dλ. (2.4)

To derive (2.4) one should multiply exp(βH) from the left-hand side to (2.4) and consider
the derivative in terms ofβ. With the use of (2.4) the expectation〈Q〉 is expanded in terms
of H and we obtain

χ = ∂

∂H

[
〈Q〉0 + H

∫ β

0 〈exp(λH0)Q exp(−λH0)Q〉0 dλ

1 + H
∫ β

0 〈Q〉0 dλ
+ O(H 2)

] ∣∣∣∣
H=0

=
∫ β

0
〈exp(λH0)Q exp(−λH0)Q〉0 dλ (2.5)

where〈〉0 is the expectation taken atH = 0. Next let us introduce the operationδ by the
relation

δ0Q = Q δn+1Q = [H0, δ
nQ]. (2.6)

With the use of the following expansion

exp(λH0)Q exp(−λH0) =
∞∑

p=0

λp

p!
δpQ (2.7)

(2.5) is expressed as

χ =
∫ β

0

〈 ∞∑
p=0

λp

p!
δpQQ

〉
0

dλ. (2.8)

This equals to

χ =
∞∑

p=0

1

p!

∫ β

0
λp dλ 〈δpQQ〉0

=
∞∑

p=0

βp+1

(p + 1)!
〈δpQQ〉0. (2.9)
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Then our subject is to evaluate the correlation function〈δpQQ〉0 and to perform the infinite
sum in (2.9).

It is straightforward to show inductively for integerp > 0 that

δpQ = (−J )pτpgµB

N∑
i=1

p∑
l=0

(
p

l

)
(sz

i )
p−lsk

i+1(s
z
i+2)

l

whereτp = 1 for evenp, τp = i for odd p, k = x for evenp, k = y for odd p and(
p

l

)
= p!

(p − l)!l!
.

Next let |m〉 be the eigenstate ofH0 with eigenvalueEm : H0|m〉 = Em|m〉. The state|m〉
is a direct product of eigenstate of eachsz

i . Obviously〈m|(sz
i )

lsx
i |m〉 = 0 (l = 0, 1, 2, . . .)

for all |m〉 and therefore〈(sz
i )

p−lsk
i+1(s

z
i+2)

lsx
j 〉0 = 0 for j 6= i + 1. As a result〈δpQQ〉0 is

expressed as

〈δpQQ〉0 = (−J )pτp(gµB)2N

p∑
l=0

(
p

l

)
〈(sz

1)
p−l(sk

2sx
2 )(sz

3)
l〉0. (2.10)

The correlation inside the sum in (2.10) is obtained by the transfer matrix method. LetV

(which is written asVS in the appendix) be the transfer matrix for the Hamiltonian (1.1) as

Vij ≡ (V )ij = exp[βJ (S − i + 1)(S − j + 1)] (2.11)

wherei, j = 1, 2, . . . , n with n = 2S+1, and letU be the matrix whose element(U)ij = uij

is the ith element of the orthonormalized eigenvector corresponding to thej th eigenvalue
λj : they satisfy the relationV = U3U−1, (3)ij = λjδij . Hereλ1 denotes the maximum
eigenvalue, which is non-degenerate. The operatorsksx(k = x, y) is non-diagonal in
the standard representation wheres2 and sz are diagonalized simultaneously. Its diagonal
elements are quantum expectations for each corresponding basic state. The expectation
〈sk

i s
x
i 〉0, for example, can be calculated with the use of the transfer matrix as

〈sk
i s

x
i 〉0 = Tr sk

i s
x
i exp(−βH0)

Tr exp(−βH0)
=

∑
m〈m|sk

i s
x
i |m〉 exp(−βEm)∑

m exp(−βEm)

= Tr D(p)V N

Tr V N
(2.12)

whereD(p) is the matrix with the element

(D(p))ll′ = D
(p)

l δll′

D
(p)

l =
{

(sysx)ll = (S − l + 1)/2i (odd p)

(sxsx)ll = (S(S + 1) − (S − l + 1)2)/2 (evenp).

(2.13)

Similarly our expectation is obtained by

〈(sz
1)

p−l(sk
2sx

2 )(sz
3)

l〉0 = Tr(sz)p−lV D(p)V (sz)lV N−2

Tr V N
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=

Tr(sz)p−lV D(p)V (sz)lU


1

(λ2/λ1)
N−2

. . .

(λn/λ1)
N−2

 U−1

Tr V 2U


1

(λ2/λ1)
N−2

. . .

(λn/λ1)
N−2

 U−1

.

(2.14)

In the thermodynamic limitN → ∞, the correlation is obtained as

〈(sz
1)

p−l(sk
2sx

2 )(sz
3)

l〉0 =
n∑

ij=1

d
p−l

i dl
j c

(p)

ij /c (2.15)

where

c
(p)

ij =
n∑

l=1

VilD
(p)

l Vljuj1ui1

c =
n∑

ij=1

n∑
l=1

VilVljuj1ui1

(2.16)

and

di = (sz)ii = S − i + 1. (2.17)

Here we note thatuj1ui1 can be regarded as the exactly renormalized Boltzmann weight.
The susceptibility in the thermodynamic limit

χ0 = lim
N→∞

χ

N
(2.18)

is obtained as

χ0 =
∞∑

p=0

βp+1

(p + 1)!
lim

N→∞
〈δpQQ〉0/N

=
∞∑

p=0

βp+1

(p + 1)!
(−J )pτp(gµB)2

p∑
l=0

(
p

l

) n∑
ij=1

d
p−l

i dl
j c

(p)

ij /c

= (gµB)2

−J

∞∑
p=0

(−βJ )p+1

(p + 1)!

n∑
ij=1

τpc
(p)

ij

c
(di + dj )

p. (2.19)

This should be classified according todi +dj andp. We note that(di +dj )
0 = 1 and obtain

Jχ0

(gµB)2
= βJ

n∑
ij=1

c
(0)
ij

c
−

n∑
ij=1

[ ∞∑
p=1(p=odd)

(−βJ )p+1

(p + 1)!

τpc
(p)

ij

c
(di + dj )

p

+
∞∑

p=2(p=even)

(−βJ )p+1

(p + 1)!

τpc
(p)

ij

c
(di + dj )

p

]

= 1

c
βJ

n∑
ij=1

uj1ui1

n∑
l=1

D
(0)
l e(S−l+1)(di+dj )βJ
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−1

c

n∑
ij=1di+dj 6=0

[
uj1ui1

di + dj

n∑
l=1

iD
(1)
l e(S−l+1)(di+dj )βJ [cosh((di + dj )βJ ) − 1]

+ uj1ui1

di + dj

n∑
l=1

D
(2)
l e(S−l+1)(di+dj )βJ [(di + dj )βJ − sinh((di + dj )βJ )]

]
.

(2.20)

After all, from (2.20), the susceptibility is exactly obtained as

Jχ0

(gµB)2
= 1

c

n∑
ij=1di+dj 6=0

uj1ui1

di + dj

S∑
m=−S

mem(di+dj )K + S(S + 1)(2S + 1)K/3c (2.21)

whereK = βJ . We use the fact
∑n

i=1 ui1un+1−i1 = 1 derived in the appendix. The constant
c in (2.21) is rewritten from (2.16) as

c =
n∑

ij=1

uj1ui1

S∑
m=−S

em(di+dj )K . (2.22)

The only unknown quantity in (2.21) and (2.22) is the eigenvectorui1 for the maximum
eigenvalueλ1 of V . To obtainui1 for general spinS is one of the unsolved problems but is
possible for smallS by direct calculations. The eigenvalueλ1 and the eigenvectorui1 for
S 6 3

2, and the eigenvalueλ1 for S = 5
2 are shown in the appendix. It is possible to write

down the exact susceptibility explicitly at least up toS = 7
2 as easily seen in the appendix.

Numerical calculations are easy for arbitrary spin-S.

2.2. The transverse susceptibility

The exact transverse susceptibility forS = 1
2 is immediately obtained whenu11 andu21 in

the appendix are substituted to (2.21) and (2.22) as

Jχ0

(gµB)2
= 1

2

[
K/4

cosh2(K/4)
+ tanh(K/4)

]
. (2.23)

This result was already obtained by Fisher [4, 5] and Katsura [6]. The exact susceptibility
for S > 1 are also obtained fromui1 listed in the appendix as

Jχ0

(gµB)2
= 1

c
[2K + 4

√
2 sinθ1 cosθ1 sinhK + cos2 θ1 sinh 2K] (2.24)

where

c = 3 + 2
√

2 sinθ1 cosθ1(1 + 2 coshK) + cos2 θ1(1 + 2 cosh 2K)

tan 2θ1 =
√

2

coshK − 1/2

(2.25)

for S = 1 and

Jχ0

(gµB)2
= 1

c
[5K + sin2 θ 3

2
(sinh(K/2) + 3 sinh(3K/2)) + sinθ 3

2
cosθ 3

2
(2 sinh(K/2)

+6 sinh(3K/2) + sinhK + 3 sinh 3K)

+ cos2 θ 3
2
(sinh(3K/2) + 3 sinh(9K/2))/3] (2.26)
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where

c = 4 + 2 sin2 θ 3
2
(cosh(K/2) + cosh(3K/2)) + 4 sinθ 3

2
cosθ 3

2
(cosh(K/2) + cosh(3K/2)

+ coshK + cosh 3K) + 2 cos2 θ 3
2
(cosh(3K/2) + cosh(9K/2))]

tan 2θ 3
2

= 2 cosh(3K/4)

cosh(9K/4) − cosh(K/4)

(2.27)

for S = 3
2. The analytic expression for spin at least up toS = 7

2 and numerical calculations
for arbitrary spin are possible, as mentioned at the end of section 2.1. The results for
S 6 7

2 are shown in figure 1. The equivalent results are also shown in figure 2 where
sl
i (l = x, y, z) in (1.1) are replaced bysl

i /S (l = x, y, z), i.e. the susceptibility for the
Hamiltonian

H = − J

S2

N∑
i=1

sz
i s

z
i+1 − gµB

H

S

N∑
i=1

sx
i . (2.28)

The results of numerical calculations for (2.28) withS = 6, 12 and 24 are shown together
in figure 2.

2.3. Low- and high-temperature expansions

Although the maximum eigenvalueλ1 and the eigenvectorui1 have been obtained only for
small S, the low- and high-temperature expansions ofλ1 and ui1 are exactly possible for
arbitrary spin-S. The eigenvalueλ1 and the eigenvectorui1 are

λ1 = eK/4 + e−K/4

u11 = u21 = 1/
√

2
(2.29)

for S = 1
2. At low temperatures, it is easy to show that

λ1 = eK(1 + 3e−2K + 2e−3K − 4e−4K + O(e−5K))

u11 = u31 = (1 − e−2K − 2e−3K + 9e−4K/2)/
√

2 + O(e−5K)

u21 =
√

2(e−K + e−2K − 3e−3K − 10e−4K) + O(e−5K)

(2.30)

for S = 1 and

λ1 = e9K/4(1 + e−3K + 3e−9K/2 + O(e−5K))

u11 = u41 = (1 − e−3K/2 − e−9K/2)/
√

2 + O(e−5K)

u21 = u31 = (e−3K/2 + e−3K + e−7K/2 + e−4K − 3e−9K/2/2)/
√

2 + O(e−5K)

(2.31)

for S = 3
2. One can obtain the low-temperature expansion ofλ1 for S > 2 as

λ1 = eS2K(1 + e−2SK + o(e−2SK)). (2.32)

Then it is straightforward to show

u11 = u51 = (1 − e−4K)/
√

2 + O(e−6K)

u21 = u41 = e−2K/
√

2 + O(e−6K)

u31 =
√

2e−4K + O(e−6K)

(2.33)
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for S = 2 and

u11 = un1 = (1 − e−2SK)/
√

2 + o(e−2SK)

u21 = un−11 = e−SK/
√

2 + o(e−2SK)

u31 = un−21 = e−2SK/
√

2 + o(e−2SK)

ui1 = o(e−2SK) (4 6 i 6 n − 3)

(2.34)

for S > 5
2.

From (2.21), (2.22) and (2.29)–(2.34), the low-temperature expansions of the
susceptibility are obtained as

Jχ0

(gµB)2
= 1

2
−

(
1 − K

2

)
e−K/2 + (1 − K)e−K + O(Ke−3K/2) (2.35)

for S = 1
2,

Jχ0

(gµB)2
= 1

2 + 2Ke−2K − 4(4 + 3K)e−4K + O(Ke−5K) (2.36)

for S = 1,

Jχ0

(gµB)2
= 1

2 + 1
6e−3K + ( 1

2 + 5K)e−9K/2 + O(Ke−5K) (2.37)

for S = 3
2 and

Jχ0

(gµB)2
= 1

2
+ 1

2S(2S − 1)
e−2SK + o(Ke−3SK) (2.38)

for S > 2. The coefficient of the term e−2SK can be expressed as [2S(2S − 1)]−1 for
S > 3

2, although the eigenvectorui1 show such uniform structure only forS > 5
2. From

(2.35)–(2.38) we have derived for arbitrary spin that theT → 0 limit is a finite constant
and independent on spin-S.

At high temperatures the eigenvector is given by

ui1 = 1/
√

n + O(K2) (2.39)

where the term proportional toK vanishes as seen in the appendix. From (2.19) and (2.39)
the high-temperature expansion of the susceptibility is obtained as

Jχ0

(gµB)2
= K

n∑
ij=1

c
(0)
ij

c
− 1

2
K2

n∑
ij=1

ic
(1)
ij

c
(di + dj ) + O(K3)

= J

kBT

1

3
S(S + 1) + O

((
1

T

)3)
. (2.40)

The first term in (2.40) denotes the Curie’s law as is expected. The term proportional
to T −p always vanish for evenp. This is consistent with the following fact thatχ0 is
invariant under the sign reversal of interactionJ 7→ −J , andJχ0/(gµB)2 depends onJ
andT only throughK = J/kBT , so thatJχ0/(gµB)2 is an odd function ofK and hence
an odd function ofT .
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3. Conclusions

The main result of this paper is (2.21) and (2.22) which is the zero-field susceptibility of
the transverse Ising chain (1.1) with arbitrary spin. The parameterdi in (2.21) and (2.22)
is defined in (2.17) and the parametersui1(i = 1, . . . , n) are elements of the eigenvector
corresponding to the maximum eigenvalue of the transfer matrix (2.11). The eigenvector
ui1 and the eigenvalueλ1 for S 6 3

2, and the eigenvalueλ1 for S = 2 and 5
2 are obtained

in the appendix and hence the susceptibility is obtained forS 6 5
2. Analytic expression is

obviously possible at least up toS = 7
2. Numerical calculations are easy for arbitrary spin.

Low- and high-temperature expansions are performed for arbitrary spin as (2.35)–(2.38) and
(2.40) and it is derived that theT → 0 limit of the susceptibility is a constant independent
on spin values.
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Appendix

The transfer matrixVS for S = 1
2 Ising chain is diagonalized by a unitary matrixR 1

2
as

R 1
2

= 1√
2

(
1 1
1 −1

)
R−1

1
2

V 1
2
R 1

2
=

(
2 cosh(K/4) 0

0 2 sinh(K/4)

) . (A.1)

Our subject to diagonalize the transfer matrixVS for arbitrary spinS is simplified by the
following unitary matrix

RS = 1√
2



1 1
. . . · · ·

1 1√
2

1 −1

· · · . . .

1 −1


and

1√
2



1 1
. . . · · ·

1 1
1 −1

· · · . . .

1 −1



(A.2)

for integer and half-integer spin, respectively. The elements(RS)ij except forj = i or
j = n − i + 1 are zero in (A.2). With the use of thisRS , the transfer matrixVS is
block-diagonalized as

R−1
S VSRS =

(
AS OS

OS BS

)
(A.3)
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whereOS is the matrix and all the elements are zero and

AS =


2cS×S . . . 2cS×1

√
2

...
...

...

2c1×S · · · 2c1×1

√
2√

2 . . .
√

2 1

 BS =
 2s1×1 . . . 2s1×S

...
...

2sS×1 . . . 2sS×S

 (A.4)

for integer spin and

AS =

 2cS×S . . . 2cS× 1
2

...
...

2c 1
2 ×S . . . 2c 1

2 × 1
2

 BS =

 2s 1
2 × 1

2
. . . 2s 1

2 ×S

...
...

2sS× 1
2

. . . 2sS×S

 (A.5)

for half-integer spin. In (A.4) and (A.5) we use the notationcm ≡ coshmK and
sm ≡ sinhmK. The maximum eigenvalueλ1 of VS and the eigenvectorui1 for λ1 are
obtained from the maximum eigenvalue ofAS and the eigenvector for it. As a result all the
elementsui1(i = 1, . . . , n) are even functions ofK and satisfy the relationun+1−i1 = ui1.
So the normalization condition yields

∑n
i=1 ui1un+1−i1 = 1. From the theorem of Frobenius

all the elementsui1 should be positive. The degree of the characteristic equation ofAS is
[(n+1)/2], where [] is the Gauss symbol, and the equation can be solved at least forS 6 7

2
i.e. for [(n + 1)/2] 6 4.

Here we would like to list the maximum eigenvalueλ1, the eigenvectorui1 of VS for
S 6 3

2, andλ1 for S = 2 and 5
2. It is easy to obtain

λ1 = 2c1

u11 = u21 = 2−1/2
(A.6)

for S = 1
2,

λ1 = ((2c1 + 1) + ((2c1 − 1)2 + 8)1/2)/2

u11 = u31 = 2−1/2 cosθ1

u21 = sinθ1

tan 2θ1 = 21/2/(c1 − 1/2)

(A.7)

for S = 1 and

λ1 = (c 9
4
+ c 1

4
) + ((c 9

4
− c 1

4
)2 + (2c 3

4
)2)1/2

u11 = u41 = 2−1/2 cosθ 3
2

u21 = u31 = 2−1/2 sinθ 3
2

tan 2θ 3
2

= 2c 3
4
/(c 9

4
− c 1

4
)

(A.8)

for S = 3
2.

The maximum eigenvalueλ1 for S = 2 and 5
2 are obtained as the maximum root of the

characteristic equation forAS as

λ1 = 23
1/2
0 cos

φ

3
(A.9)

where tanφ = (433
0/3

2
1−1)1/2, 30 = (ξ1+ξ2

2/3)/3, 31 = ξ0+ξ1ξ2/3+2ξ3
2/27,ξ0 = detAS ,

ξ1 = −(1
(1)
S + 1

(2)
S + 1

(3)
S ) and ξ2 = tr AS . The new notation1(l)

S = (A−1
S )ll × detAS is

the cofactor of the matrixAS .
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[2] Blinc R andŽeǩs B 1972Adv. Phys.91 693
[3] Suzuki M 1976Prog. Theor. Phys.56 1454
[4] Fisher M E 1960Physica26 618
[5] Fisher M E 1963J. Math. Phys.4 124
[6] Katsura S 1962Phys. Rev.127 1508
[7] Pfeuty P 1970Ann. Phys.57 79
[8] Suzuki M, Tsujiyama B and Katsura S 1967J. Math. Phys.8 124
[9] Dobson J F 1969J. Math. Phys.10 40

[10] Obokata T and Oguchi T 1968J. Phys. Soc. Japan25 322
[11] Asano T 1968Prog. Theor. Phys.40 1328
[12] Suzuki M 1968J. Math. Phys.9 2064
[13] Griffiths R B 1969J. Math. Phys.10 1559
[14] Blume M 1966Phys. Rev.141 517
[15] Capel H W 1966 Physica32 966
[16] Capel H W 1966 Phys. Lett.31 327
[17] Griffiths R B 1967Physica33 689
[18] Blume M, Emery V J and Griffiths R B 1971Phys. Rev.A 4 1071
[19] Horiguchi T 1986Phys. Lett.113A 425
[20] Joyce G S 1967Phys. Rev. Lett.19 581
[21] Tompson C J 1968J. Math. Phys.9 241
[22] Horiguchi T 1990J. Phys. Soc. Japan59 3142
[23] Ma Y Q and Gong C D 1992J. Phys.: Condens. Matter4 L313
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